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ABSTRACT 

 
   In a highly collaborative research and development pro-
ject with mining and university partners, sensors and data-
analysis tools are being developed for rock-mass charac-
terization and real-time measurement of mineral content. 
Determining mineralogy prior to mucking in an open-pit 
mine is important for routing the material to the appropri-
ate processing stream. A possible alternative to lab assay 
of dust and cuttings obtained from drill holes is continu-
ous on-line sampling and real-time x-ray fluorescence 
(XRF) spectroscopy. Results presented demonstrate that 
statistical analyses combined with XRF data can be em-
ployed to identify minerals and, possibly, different rock 
types. The objective is to create a detailed three-
dimensional mineralogical map in real time that would 
improve downstream process efficiency. 
 
 

INTRODUCTION 
 
   The work described here is part of a collaborative re-
search and development project funded by the Depart-
ment of Energy’s Office of Industrial Technologies. The 
overall objective of the work is to provide measurements 
while drilling to provide borehole profiles of mineral con-
tent and rock/fracture-characterization data that can be 
used to develop blast-design tools to achieve optimal 
fragmentation of rock. Partners on the project are the 
Lawrence Berkeley National Laboratory; the University 
of Arizona; Phelps Dodge Morenci, Inc.; Aquila Mining 
Systems LTD; and Split Engineering, LLC. Papers de-
scribing this work include D. Hopkins et al. (2000) and J. 
Kemeny et al. (2001).  
 
   The results described herein are from that part of the 
project focused on design and implementation of a proto-
type system to collect dust and cuttings during drilling, 
and analyze the samples collected to determine mineral 
content. The objective is to generate a three-dimensional 
map of mineralogy throughout the bench during drilling. 
Work is also underway to determine if the elemental-
composition data being collected can also be analyzed to 
provide information about rock properties such as hard-
ness that would be useful to blasting engineers.  
 
   X-ray fluorescence (XRF) spectroscopy is routinely 
used to analyze atomic composition in a wide range of 
applications including detection of environmental con-
tamination in soils, rare-metal detection, and materials 
evaluation. The research challenges of adapting the tech-
nology for use as a field measurement tool include ensur-
ing reliable and accurate measurements under field condi-
tions, creating a robust system that can survive the harsh 
mining environment with minimal maintenance, and 
minimizing interference with drilling operations. 
 

 
XRF SPECTROSCOPY 

 
   X-ray fluorescence (XRF) spectroscopy is a nondestruc-
tive technique for analyzing the elemental composition of 
solids and liquids. Measurements are made by irradiating 
a sample with high-energy photons, such as X-rays or 
gamma rays, and measuring the resulting radiation emit-
ted by the material (see R. Giauque, 1994). When high-
energy photons strike the sample, energy absorbed causes 
electrons to be ejected out of their shells to a higher orbit. 
This process, called the photoelectric effect, causes an 
unstable atomic condition. Electrons in outer shells drop 
down to fill the vacancies left by the ejected electrons; 
since outer-shell electrons have more energy than those in 
inner shells, the electrons moving into the inner shell have 
excess energy that is released as X-ray photons (see Fig-
ure 1). The irradiated surface emits a spectrum of scat-
tered radiation and fluorescent x-rays. Each element has a 
unique X-ray signature that can be identified, and the 
number of X-rays of each type emitted by the sample is 
used to determine the concentration of each element.  
 

Figure 1. High-energy photons striking the sample cause 
inner-orbital electrons to be ejected from their shells. 
Fluorescence occurs when an outer-orbital electron drops 
down to fill the vacancy left by the ejected electron, caus-
ing an X-ray photon to be emitted. Each element has a 
unique X-ray signature. 
 
   Because of the well-defined energy signature of each 
element, it is possible to determine the elemental compo-
sition of a sample with very high precision. Detection 
resolution depends on the source, but is on the order of 1 
to 25 parts per million (ppm). Accuracy improves with 
increasing time of exposure; measurement times are on 
the order of seconds to a few minutes. Accuracy also de-
pends on the atomic number of the element being meas-
ured; elements with high atomic numbers are easier to 
measure than those with low numbers. This arises from 
what is called Auger electron emission, which occurs 
when fluorescence radiation excites an electron from an 
outer shell rather than being emitted from the atom. Auger 
electron emission declines with increasing atomic num-
ber. Sample penetration by source X-rays and fluores-
cence energy are also greater for higher order elements. 
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   Commercially available XRF spectrometers generally 
consist of a source of excitation, a radiation detector, and 
a display of the spectral response of the sample. Excita-
tion sources are either X-ray tubes, or sealed sources of a 
radioactive material. For field use, X-ray sources are 
probably not practical because of their size and power 
requirements. However, compared to radioactive sources, 
X-ray tubes have the advantage of operating on demand.  
Devices that use radioactive sources are better suited to 
field applications because they are lightweight (typically 
1-2 pounds), they can run off batteries, and they can be 
easily housed in a small portable unit. However, radioac-
tive sources must be replaced periodically, on the order of 
once per year.  Radiation detectors are made from a vari-
ety of semiconductor materials, which differ with respect 
to resolution, maintenance requirements, cost, operating 
conditions, and range of detection. The best radiation 
source and detector for the test site are under investiga-
tion.  

 
 

MINERALOGY OF THE MINE 
 
   The results presented below are based on analysis of 
field samples collected at the Phelps Dodge Morenci 
Mine in southeastern Arizona. The Morenci mining dis-
trict is the largest producing porphyry-copper deposit in 
North America. The porphyry-copper deposits in this dis-
trict are associated with granitic rock composed of large 
crystals in a fine-grained matrix; for detailed descriptions 
of the geology in this region see the volume edited by S. 
R. Titley and C. L. Hicks (1971). The geology is similar 
to that of other large copper deposits in volcanic arcs as-
sociated with subduction zones. Economically important 
minerals in these deposits generally occur as small grains 
that are either dispersed throughout the rock, or concen-
trated along closely spaced fractures; these deposits are 
typically found in and around porphyrytic felsic plutons 
that are within a few kilometers of the earth’s surface. 
 
   The Precambrian rocks consist of schist, quartzite, gran-
ite, and granodiorite (see R. T. Moolick and J. J. Durek, 
1971). The basement rock is overlain by about 300 meters 
(1000 ft) of Paleozoic sedimentary deposits consisting of 
quartzite, limestone, and shale. These sedimentary rocks 
are, in turn, overlain by remnants of Cretaceous shale and 
sandstone that are as much as 250 meters (840 ft) thick. 
Tertiary volcanic flows and intrusive pipes of basalt, an-
desite and rhyollite encircle the district.  
 
   It does not appear that there was any igneous activity in 
the region between the Precambrian period and the Lara-
mide intrusion that occurred during the Cretaceous-
Tertiary period. The stocks or laccolithes and associated 
dikes and sills created at that time are almost entirely por-
phyritic in texture, and developed during three distinct 
stages. The rock types corresponding to these stages are 

described below, as paraphrased from R. T. Moolick and 
J. J. Durek (1971): 

   Diorite Porphyry: The southwestern part of the in-
trusive complex is a gray mottled diorite porphyry 
containing large phenocrysts of hornblende and labra-
dorite. 
 
   Quartz monzonite porphyry: The monzonite por-
phyry intrusive has the greatest exposed area and is 
the principal ore bearing rock. It consists of small, 
closely-packed phenocrysts of orthoclase, albite, and 
oligoclase in a microcrystalline groundmass of quartz 
and feldspar. Small quartz phenocrysts are present 
only locally, and quartz is generally confined to the 
groundmass. Biotite appears to have been abundant 
but rarely preserved. When only weakly altered, the 
rock is gray, brownish gray or greenish gray; it is gen-
erally strongly altered and light gray or white.  
 
   Granite porphyry: Much of the central part of the in-
trusive complex consists of granite porphyry contain-
ing medium to large well-spaced phenocrysts of or-
thoclase, albite and quartz. Several ages of granite 
porphry occur and have intrusive contacts and marked 
textural differences. The youngest granite porphyry 
contains euhedral quartz phenocrysts as much as 1cm 
in diameter and is weakly mineralized. The older 
granite porphyry usually contains smaller quartz 
phenocrysts and more closely spaced feldspar pheno-
crysts. Texturally it appears similar to the quartz mon-
zonite porphyry. 

 
   The main ore body in the Morenci district encompasses 
about two-thirds of the quartz monzonite porphyry intru-
sion. Moolick and Durek report that intense fracturing in 
the ore body has broken the quartz monzonite porphyry 
into fragments that are typically only a few inches in di-
ameter. The Precambrian granite and granite porphyry are 
generally less fractured and are often very blocky. 

Figure 2. The rocks in the Morenci district are almost entirely porphyritic in texture, and developed 
during three stages; the rock types corresponding to these stages are diorite porphyry, quartz-
monzonite porphyry, and granite porphyry. The rocks pictured indicate the tremendous variety in 
mineralogy that occurs at a single site. 

 
Alteration at the Morenci district 
 
   As explained by S. C. Creasey (1971), porphyry intru-
sion of a mixed sedimentary sequence was followed by 
extensive alteration of the wall rocks and porphyry. 
Creasey writes that it is difficult to distinguish between 
the metamorphic contact and the hydrothermal alteration. 
There are three primary zones where alteration silicates 
and carbonates are observed: 
 
• Propylitic Zone, with chlorite, epidote, calcite, talc, 

green biotite, birous hornblende, and sericite; 
• Argillic Zone, with quartz, sericite, kaolinite, mont-

morillonite, chlorite, and pyrite; and 
• Phyllic Zone, with quartz-sericite and pyrite. 
 
   Ore-bearing minerals are found in all of these alteration 
zones, as well as in the host rock. The primary ore- 
 

Figure 3. A rock sample from the older-granite-porphyry zone. Alteration is quartz-sericite. Copper 
oxide is present in the sample as chrysocolla. The copper concentration measured using XRF analy-
sis is 8360 ppm or 0.83% for this sample. 
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bearing minerals are chalcocite, covellite, cuprite, chal-
copyrite, pyrite, cuprite, malachite, azurite, chrysocolla, 
brochantite, native copper, molybdenite, and sphalerite. 
The samples analyzed to date by XRF spectroscopy in-
clude most of these ore-bearing minerals, and include 
specimens from the three types of porphyry rock de-
scribed above, as well as each of the three alteration 
zones, also described above. Typical rock samples from 
the field site are shown in Figures 2 and 3. 
 
 

XRF ANALYSIS OF FIELD SAMPLES 
 
   Samples obtained in the field are evaluated using a 
bench-top XRF system. Calibration samples obtained 
from the National Institute of Standards and Technology 
(NIST) are also being evaluated. A preliminary series of 
laboratory measurements were conducted to demonstrate 
the ability of XRF spectroscopy to discern various miner-
als in samples collected in the field. A wide variety of 
rock samples and drill cuttings from boreholes were col-
lected from the Phelps Dodge Morenci open-pit mine in 
Arizona. Seventy samples were prepared for XRF analy-
sis; to obtain the best results possible, the samples were 
ground to powder. An example of the results obtained is 
shown in Figure 3. The elements in the gray-scale graph 
are arranged in order of atomic number, and indicate the 
concentration of each element in the sample normalized 
by the maximum measured concentration of that element 
across all 70 samples. Light colors indicate a relatively 
high concentration of a particular element  (white corre-
sponds to 100% of the maximum value), compared to 
dark shades, which indicate a relatively low concentration 
(black corresponds to 0%). For example, white indicates 
that the sample contains the highest measured concentra-
tion of that element among the 70 samples tested. Results 
of XRF analysis of samples collected during drilling are 
described below in the section summarizing field-test 
results. 
 
 

PROTOTYPE ONLINE SAMPLE COLLECTION  
SYSTEM 

 
   During drilling, large amounts of dust are produced and 
flushed out of the borehole with compressed air. XRF 
spectroscopy requires only very small quantities of mate-
rial for analysis. To obtain representative borehole sam-
ples during drilling, a prototype dust-collection system 
was designed and fabricated. The harsh mining environ-
ment and vibration of the drill rig require that the system 
be robust and simple, making it desirable to have as few 
moving parts as possible. It is also essential that the col-
lection system not interfere with the drilling process, and 
not require special handling when the drill is moving be-
tween locations.  
 
   A cyclone was chosen to separate the dust from the 
transport medium, which can be air or a liquid. The sys-

tem built and tested for the current project uses air. The 
dust-laden air enters at the top of the cyclone in a tangen-
tial port (see Figure 4a). Centrifugal force causes the dust 
to be thrown against the cyclone walls; from there it spi-
rals downward due to gravity. In the cone, the airflow 
velocity increases from top to bottom, until the vortex 
inverts, causing the air to flow upward in the center. The 
dust drops out at the bottom and clean air exits at the top, 
through the exhaust port. Recovery of up to 99% of the 
solid material is possible.  

 
Figure 4a. Schematic view of the online dust/cutting col-
lection system. During drilling, dust and cuttings are col-
lected through a nozzle placed near the borehole. A ven-
turi-suction system using compressed air supplied from 
the drill rig provides a continuous sampling of material 
during drilling; exhaust from the venturi system is routed 
to the cyclone where the solid material is separated from 
the air. Samples are collected at the bottom of the cy-
clone. 
 
   The cyclone operates without any moving parts, and 
does not contain filters or any other consumables that 
need to be replaced.  The dust was collected through a 
nozzle equipped with a screen to prevent large debris 
from clogging the flexible hoses and pipes. Samples were 
also successfully collected without the nozzle; dust was 
collected directly from the hose placed near the borehole. 
A venturi-suction system was operated with compressed 
air from the drill rig. The exhaust from the venturi nozzle 
is routed to the cyclone for dust separation. Supplying 
compressed air is not a problem; drill rigs have large air 
compressors used to supply air that is used for cooling as 
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well as flushing cuttings out of the borehole. A picture 
showing the prototype collection system mounted on a 
drill rig is shown in Figure 4b. 
 

 
Figure 4b. Dust/cutting collection system installed on a 
drill rig. 
 
 

FIELD TEST RESULTS 
 
   More than 90 dust/cutting samples were collected dur-
ing a field experiment conducted at the Phelps Dodge 
Morenci Mine. The samples were collected during drill-
ing, using the dust collection system described in the pre-
vious section. After initial difficulty in finding a good 
location for the collecting nozzle, it was placed next to the 
borehole exhaust system where a steady stream of dust 
and cuttings were retrieved. Samples were collected con-
tinuously over the entire drilling length of 18 meters (60 
ft). Every 1.5 to 3.0 meters (5 to 10 ft) the sample jar was 
manually replaced; thus, each sample represents an aver-
age over the sample length. A next step in moving toward 
a stand-alone field system is automating the sample col-
lection. The system could include an XRF analysis capa-
bility, or the samples could be logged and analyzed else-
where. 
 

   XRF spectroscopy is most accurate when applied to 
finely crushed material. An open question is whether dust 
and cuttings collected directly from the borehole are suit-
able for XRF analysis as is, or whether they should be 
crushed further. For the results presented here, the sam-
ples collected in the field were crushed to powder with a 
small ball mill. 
 
   For future work, it is important to determine the rela-
tionship between grain size and XRF sensitivity/accuracy. 
One approach would be to collect a larger volume of dust 
in the cyclone that could be put through a sieve to retrieve 
only material with a very fine particle size. It might also 
be possible to sort particles directly during sample collec-
tion; inside the cyclone, large particles are separated first 
from the volume of material because they reach the cy-
clone’s walls faster than smaller particles. However, this 
approach would introduce sampling errors depending on 
the degree to which particle size is related to elemental 
composition. Experiments and research would be required 
to determine the relationship between measured data and 
grain size.  
 
Copper concentration in boreholes 
 
   Figure 5 shows the copper concentration measured in 
six boreholes located on the same bench. Individual sam-
ples were collected with the cyclone system continuously; 
the material collected for each sample corresponds to ap-
proximately 1.5-meters (5 ft) of borehole length. The 
samples were crushed to powder as described above, and 
analyzed with XRF spectroscopy to obtain copper c
centrations. Copper concentrations can be measured relia
bly with a high level of accuracy (greater than 1 ppm). 
For the data displayed in Figure 5, the highest measur
value of copper concentration is 3670 microgram
gram; for the 90 samples collected and analyzed from th
same bench, the highest concentration measured is 7110 
microgram per gram. The borehole profiles shown in t
figure indicate that the distribution of copper ore varies 
considerably over the length of the borehole, and betwee
boreholes on the same bench. These results must be co
firmed by analyzing the effect of sampling bias intro-
duced by the collection method. This issue is discussed
more fully in the following section.  

on-
-

ed 
s per 

e 

he 

n 
n-

 

 
Rock groups in boreholes 
 
   There is interest in determining if the XRF data can be 
used to help identify rock types or rock properties such as 
hardness that would be valuable information for blasting 
engineers. As a first step toward this goal, the XRF meas-
urements described above were grouped using an empiri-
cal-classification scheme (statistical classification tech-
niques are discussed in the following section). 
 
   To implement the classification scheme, the concentra-
tion data for each element are normalized by the maxi- 
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Figure 5. Borehole profiles of copper concentration measured in six boreholes located on the same bench. 
Samples were collected with the cyclone system during drilling (see Figure 4a); individual samples were 
collected approximately every 1.5 meters (5 ft). The samples collected were analyzed using XRF spectros-
copy to obtain copper concentration.  

Figure 6. XRF measurements obtained for more than 90 samples collected during drilling were analyzed us-
ing an empirical-classification scheme to help determine if the data can be used to discern information about 
rock type and rock properties. The graph shows different rock groups identified in six boreholes; the copper 
content measured in the same boreholes is shown in Figure 5.  
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mum concentration measured for that element among all 
samples. For example, the highest copper concentration 
measured in the lot of 70 samples was 8360 micrograms 
per gram. All copper data are normalized by this value. 
Likewise, the highest concentration of zinc measured was 
8470 micrograms per gram, and all measurements of zinc 
were normalized by this value. Each element measured in 
a sample is thus described as the percentage of the highest 
occurring concentration of that element among all sam-
ples. The first step in the classification scheme is based on 
pairwise comparisons of concentrations of elements 
common to both samples. The average of the absolute 
values of differences in concentration is the parameter 
that is used to determine if two samples belong in the 
same group. For example, if X1 is the percentage of the 
first element in the first sample, and Y1 is the percentage 
of the first element in the second sample, then the com-
parison C1 is calculated as (equation 1): 

 
 

C1 = |X1-Y1|     (1) 
 
 

   Such comparisons are made for all elements measured 
in both samples. Thus, there are n C values, where n is the 
number of elements that are present in both samples. The 
mean of the C1…Cn values is calculated, and is the basis 
for identifying groups; i.e., the mean of the C values is 
compared to a “threshold” value that was determined 
based on analysis of data from known rock types. In addi-
tion, two rocks were crushed, and four nominally identical 
samples were taken for each rock. This made it possible 
to identify the variability in the XRF results for samples 
nominally the same.  
 
   For the 90 samples in the data set, it appears that the 
empirical method provides reasonable groupings when the 
threshold is on the order of five percent; i.e., samples with 
an average C value less than 0.05 are considered to be 
similar. The comparison is performed for all possible 
combinations of sample pairs. All the pairs identified as 
similar are then extracted to form a subset of data. The 
next step in the analysis is to build groups. Sample pairs 
with common members are identified as a group. For ex-
ample, if the sample pairs {1,3} and {2,3} were identified 
as being similar, then the pair {1,2} is considered similar 
as well. Samples {1,2,3} are then grouped together. In 
this way, samples are included in the group that would not 
be identified from pairwise comparisons alone. There is 
no limitation on how many samples can be in one group. 
A group always contains at least two elements.  
 
   This method was applied to the 90 dust samples col-
lected with the cyclone during drilling. Of these 90 sam-
ples, 85 returned a valid XRF spectroscopy measurement 
and 71 samples could be discerned into 11 groups. Figure 
6 shows the distribution of groups in six boreholes, which 
were located on the same bench. Group 9 is not repre-
sented in any of the six boreholes shown, and Group 2 

only appeared in a single borehole. As many as five indi-
vidual groups were identified in a single borehole (bore-
hole 5 in Figure 6). Some groups occurred at multiple 
depths in the same hole; for example, eight layers were 
identified in borehole 5 where five rock groups were iden-
tified. It is postulated that some of the samples, which 
were not placed in any of the groups may have been mix-
tures of two or more rock types. In work to date, the sam-
ples have not been analyzed by other assay techniques 
that would help determine if the groups identified corre-
spond to identifiable rock types, which would indicate 
that the samples were grouped correctly. However, the 90 
samples collected during drilling were compared to sam-
ples obtained from known rock types using the same clas-
sification method. No correlation could be established; 
however, the known samples are not from the same area 
of the mine as the 90 samples collected during drilling. 
Efforts are underway to expand the current database.  
 
   The method described in this section is empirical, and is 
based on normalized measurements of element concentra-
tions. Any statistical analyses implemented in a produc-
tion environment should be sample independent. New 
samples added to the current database could cause a 
change in the normalization procedure, and might affect 
the threshold value or even change the groupings. None-
theless, the results to date are encouraging because they 
indicate that XRF analysis of samples collected during 
drilling might contain useful information about rock 
properties. Statistical analyses, such as those introduced 
in the following section, and more samples, are required 
to fully understand the relationships between element 
concentrations, mineralogy, and rock properties.  
 
 

STATISTICAL ANALYSES 
 
   As discussed in the previous section, efforts are under-
way to determine if the XRF elemental-composition data 
can be used to identify rock type or rock properties, in 
addition to mineral content. Toward this goal, preliminary 
work has been undertaken applying descriptive data 
analysis and statistical clustering techniques to the XRF 
measurements from two sets of samples. The rock classi-
fication task is complicated by several factors including 
sampling errors, mixing of dust particles in the borehole, 
and the difficulty of trying to discern rock properties 
based on elemental composition. Sampling errors are in-
troduced by the way in which the samples are obtained. 
At present, dust and cuttings are extracted from the bore-
hole continuously, with each sample representing about 
1.5 meters (5 ft) of borehole length. The samples are, 
thus, a mixture of the material in that length of borehole. 
It is also likely that the distribution of dust particles in the 
borehole depends in part on the mass and size of the par-
ticles. Thus, the dust collected at any point in time is 
likely to contain particles that come from rock at shal-
lower depths. These sampling problems are, of course, 
also an issue for the mineral content measurements. This 
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section discusses these problems, and suggests some pos-
sible solutions. 
 
   For the results presented here, XRF analysis detected 
measurable concentrations of the following 18 elements: 
potassium, calcium, titanium, manganese, iron, nickel, 
copper, zinc, gallium, arsenic, selenium, bromine, rubid-
ium, strontium, yttrium, zirconium, niobium, and lead. 
The statistical clustering technique described in the previ-
ous section, as well as a K-means technique, were applied 
to the Morenci samples to determine if rock groups could 
be identified from the XRF data. Clustering techniques do 
not require that each XRF measurement be from a known 
rock type, and provide some indication of how well statis-
tical classification techniques (which do require the rock 
type of each sample to be known) will work (see M. I. 
Jordan and C. M. Bishop, 2001).  
 
   The basic K-means technique requires the number of 
rock groups to be identified and input to the clustering 
algorithm; the average elemental concentrations of each 
rock group, as well as the variance within each group, are 
returned as output. To obtain the number of rock groups 
required as input to apply the K-means algorithm, the 
clustering procedure outlined in the previous section was 
employed. Recall that the required input for that cluster-
ing procedure is a discernment threshold, which is a 
measure of “closeness” that indicates if two sets of XRF 
measurements are in the same rock group; the clustering 
procedure returns the number of rock groups as output. 
The “closeness threshold” used was chosen based on 
analysis applied to a set of known rock groups; this en-
sures that the technique provides reasonable groupings. 
The clustering procedure was applied to samples from 
unknown rock types with a threshold value of five per-
cent; the resulting number of rock groups identified pro-
vides some indication of how many clusters to specify as 
input into the K-means algorithm. For the same number of 
clusters, K-means produced similar results, with the dif-
ference that all of the previously unassigned rock types 
were assigned to whatever cluster was “closest.” 
 
   As discussed above, a problem encountered in imple-
menting statistical classification techniques is that the 
dust samples collected during drilling are often mixes of a 
variety of constituent rock types. The presence of mixing 
means that the measured concentrations are a weighted 
average of the elemental concentrations of the constituent 
rock types in the mix. For example, if the mix is of two 
rock types with elemental concentrations e1 and e2, then 
the elemental concentration of the mix is (equation 2): 
 
 

p e1 + (1 - p) e2   (2) 
 
 
where p is the proportion of rock type one in the mix. 
Such mixing introduces a bias into the means calculated 
using standard clustering methods that makes them appear 

closer together than they are, and thus more difficult to 
discern. Consider the following example with simulated 
data, chosen for ease of illustration, with two rock types, 
each with components composed of two elements (such 
as, for example, SiO2). The simulated elemental concen-
tration data were generated randomly from two bivariate 
Gaussian distributions; one with mean concentrations of 
the two elements of 0.125 and 0.375, and the other with 
means of 0.375 and 0.125. A scatterplot of the simulated 
data is shown in Figure 7a. The K-means algorithm cor-
rectly discerns the two clusters and provides consistent 
estimates of their means. The conditional variance of each 
cluster is also a consistent estimate of the true cluster 
variance, so in this case we can also use statistical infer-
ence to discern the clusters (and determine whether the 
differences are likely to be due to chance). 
 

Figure 7A. Scatterplot of simulated mineral-concentration 
data generated randomly from two bivariate-Gaussian 
distributions. If it is assumed that there is no mixing be-
tween the two groups during sampling, then the K-means 
algorithm correctly discerns the two clusters and provides 
consistent estimates of their means. 
 

Figure 7b. Scatterplot of simulated mineral concentration 
data generated randomly from a mix of the same bivariate 
Gaussian distributions as the data plotted in Figure 7a. 
With mixing, the K-means algorithm still discerns two 
clusters, but the cluster means are biased estimates of the 
true underlying means for the two rock types. 
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   Mixing in the borehole means that the concentration 
measured is a combination of the concentration of ele-
ments in the two rock types. Figure 7b shows a scatter 
plot of data generated from the same two bivariate Gaus-
sian distributions as before, but with each data point a 
random mix of both, rather than being drawn purely from 
one distribution or the other. This requires that the mixing 
proportion p also be generated randomly (with all out-
comes equally likely). Comparing Figures 7a and 7b 
shows how mixing blurs the distinction between the clus-
ters. In the presence of mixing, the calculated cluster 
means are not consistent estimates of the means of the 
underlying component distributions; the calculated means 
are biased such that they are closer to one another than the 
true cluster means. However, with additional work, it may 
be possible to modify standard clustering techniques to 
discern the correct means of the component rock types, 
even in the presence of mixing. Meanwhile, the clustering 
results should be interpreted cautiously.  
 
   Because mixing blurs the distinction between rock 
groups it will also make statistical classification more 
difficult (note that statisticians often distinguish between 
classification and clustering techniques, although they are 
closely related). Even when mixing is not present, that 
XRF detects only certain minerals also complicates the 
task of classification. There is, however, additional infor-
mation that is relevant for improving the classification 
accuracy. For example, for elements not detectable using 
XRF analysis, it may still be possible to say something 
about their elemental concentrations. In some rock types, 
elements may occur in proportion to other elements that 
are XRF detectable. An example from the samples ana-
lyzed to date is gallium, whose presence is strongly corre-
lated to that of copper; the correlations between copper 
and trace elements measured are summarized in Table I. 
If correlations between elements that are and are not XRF 
detectable can be established for a particular site, they can 
be used to predict the presence of nondetectable elements 
from the XRF data (Figure 8). 
 

Table I. Copper Correlation with Trace Elements in 
Dust Samples 

 

   For using XRF data to discern rock types or rock prop-
erties, site-specific information can also be used to im-
prove the accuracy of classification techniques. For ex-
ample, determining spatial correlations in the distribution 
of rock types would be useful for refining the XRF classi-
fication and improving the prediction of classification 

algorithms. Further research is necessary to establish the 
spatial relationships and correlations between elements 
that might be useful for rock classification. 

   While XRF analysis promises to be a useful tool, it is 
not sufficient by itself to correctly classify all rock types. 
Nonetheless, a coarser classification might still provide 
useful information to geologists and mining engineers, 
and XRF data may still suffice for this purpose. 

 

Figure 8. Kernel density contour plot showing the correla-
tion between copper and gallium (ppm) in the data set 
with 70 samples. 
 
 

CONCLUSIONS 
 
   Field tests conducted with a prototype sample collection 
system demonstrate that it is possible to continuously 
sample dust and cuttings during drilling. The system is 
robust, with no moving parts, and is easily mounted on a 
drill rig. A variety of samples collected in the field have 
been analyzed by XRF spectroscopy to measure mineral 
content. The data collected during drilling has been used 
to create borehole profiles of copper concentration. These 
results suggest that continuous online sampling and real-
time XRF analysis of samples collected is a feasible alter-
native to laboratory assay of dust and cuttings obtained 
from boreholes post drilling. Such a system would pro-
vide much more detailed information than that currently 
available, with the potential to allow three-dimensional 
mineralogical maps to be created while drilling. An inte-
grated sample collection and mineral-content analysis 
system could be built either as a stand-alone system, or 
integrated with existing software packages that collect 
and display other drill data. The technology for sampling 
dust/cuttings during drilling could be commercialized 
separately; in this scenario the samples would be analyzed 
off line, for example, in the mine’s assay lab. An XRF 
analysis and display system could also be developed as a 
stand-alone system; in this case, a portable unit would be 
built for use by mining personnel to measure and analyze 

 Copper 
Gallium 0.86 
Zinc 0.75 
Manganese 0.69 
Yttrium 0.65 
Calcium 0.59 
Nickel 0.52 
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mineral content in the field using existing sample collec-
tion techniques. 
 
   Work is also underway to determine if the XRF elemen-
tal composition data can be used to identify rock type or 
rock properties. Toward this goal, descriptive data analy-
sis and statistical clustering techniques have been applied 
to the XRF measurements from two sets of samples. The 
clustering techniques allow different rock groups to be 
identified, but these results should be interpreted cau-
tiously. The rock classification task is complicated by 
several factors, including sampling errors, mixing of dust 
particles in the borehole, and the difficulty of trying to 
discern rock properties based on elemental composition. It 
may be possible to modify standard clustering techniques 
to discern the means of the component rock types, even in 
the presence of mixing. Site-specific information can be 
used to improve the accuracy of classification techniques. 
Additional research is also necessary to establish correla-
tions between elements that might be useful for rock clas-
sification.  
 
   In summary, work to date has demonstrated the feasibil-
ity of collecting samples while drilling and using XRF 
spectroscopy to analyze the mineral content of the sam-
ples collected. There are no technological barriers to 
automating sample collection or mineral analysis. A criti-
cal research and engineering challenge is designing a sys-
tem that will ensure the ability to obtain representative 
samples. The data can be used to create three-dimensional 
mineralogical maps, and hold promise for improving 
processing efficiency by helping to ensure that material is 
routed to the appropriate processing stream, and providing 
information to engineers that can be used to help optimize 
blasting. XRF measurements alone are not sufficient to 
correctly classify all rock types. Nonetheless, a coarser 
classification might still provide information that is useful 
to geologists and mining engineers. 
 
 

ACKNOWLEDGMENTS 
 
   This work is supported by the Director, Office of Indus-
trial Technologies, of the U.S. Department of Energy un-
der Contract No. DE-AC03-76SF00098.  
 
   The authors gratefully acknowledge the contributions of 
Ramsey Haught, of the Lawrence Berkeley National 
Laboratory, who installed the dust collection system in 
the field and collected the samples described herein. The 
authors are also grateful to industry partners Phelps 
Dodge Morenci, Inc. and Aquila Mining Sytems, LTD, 
who provided technical assistance, and access to the mine 
and drill rig as required to obtain samples. 
 
 
 
 
 

REFERENCES 
 
Creasey, S. C., 1971, “Hydrothermal alteration,” Geology 
of the Porphyry Copper Deposits Southwestern North 
America, 3rd ed., S. Titley and C. Hicks, eds., The Univer-
sity of Arizona Press, Tucson, pp. 51-74. 
 
Giauque, R. D., Asaro, F., Stross, F. H., and Hester, T. R., 
1993, “High-precision non-destructive X-ray fluorescence 
method applicable to establishing the provenance of Ob-
sidian artifacts,” X-Ray Spectrometry, Vol. 22, pp. 44-53. 
 
Hopkins, D., Ramsey, H., Karaca, M., Turler, D., Myer, 
L., Kemeny, J., Lever, P., and Lowery, M., 2000, “Blast-
ing optimization using seismic analysis and X-ray fluo-
rescence spectroscopy,” Proceedings of the 4th North 
American Rock Mechanics Symposium, J. Girard, M. 
Liebman, C. Breeds, and T. Doe, eds., Balkema, pp.1361-
1367. 
 
Jordan, M. I., and Bishop, C. M., (2001), “Mixtures and 
conditional mixtures,” An Introduction to Graphical 
Models, (forthcoming from MIT Press). 
 
Kemeny, J., Mofya, E., Kaunda, R., Perry, G., and Morin, 
B., 2001, “Improvements in blast fragmentation models 
using digital image processing,” Proceedings of the 38th 
U.S. Rock Mechanics Symposium, D. Elsworth, J.P. Ti-
nucci, and K. Heasley, eds., Balkema, pp. 361-367. 
 
Moolick, R. T., and Durek, J. J., 1971, “The Morenci Dis-
trict,”. Geology of the Porphyry Copper Deposits South-
western North America, 3rd ed., S. Titley and C. Hicks, 
eds., The University of Arizona Press, Tucson, pp. 221-
232. 
 
Titley, S. R., and Hicks, C. L., 1971, Geology of the Por-
phyry Copper Deposits Southwestern North America, 3rd 
ed., The University of Arizona Press, Tucson, AZ. 
 


	Alteration at the Morenci district
	PROTOTYPE ONLINE SAMPLE COLLECTION

	Copper concentration in boreholes
	Rock groups in boreholes
	Table I. Copper Correlation with Trace Elements in Dust Samples
	REFERENCES


